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Logic Synthesis
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Y<=A XOR B;

W<=C AND A;

K<=Y OR W;

Q<=K XOR C;

   .....

Primary goals of  logic synthesis:

Reduce delay

Reduce area

Reduce power

With small runtime budget!

What is currently a “good deal” for 
the EDA industry?

Compare to a complete design flow

1% runtime overhead for 10% total 
negative slack reduction (at negligible 
area cost)

1% runtime overhead for 1% area 
reduction (at no timing cost)

How to obtain these challenging goals?
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Exact Delay Synthesis: The Problem
Given:

a Boolean function

a set of  arrival times at the inputs

a gate library with associated delay values

The exact delay synthesis problem asks for a circuit implementation 

with the smallest arrival time at the output(s). 

ta=4

tb=1

tc=0

dand=2

dinv=1

f = a * b * c
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Unfortunately, exact delay synthesis is intractable: 

Existing design flows rely on heuristic methods.

However, heuristic techniques may miss optimization opportunities.

Affordable solution: pre-compute & store exact delay circuits 

(database) for later re-use during synthesis.

Exact Delay Synthesis: The Problem

A database for exact delay synthesis is 

a k × m matrix of  logic circuits:

k is the number of  functions 

m is the number of  arrival time patterns

For n input variables, we have k ≤ 22^n , 

m is unbounded as the number of  

possible arrival time patterns is infinite! 

Function id & boundary 

DB of Optimal Circuits 
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Equioptimizable Patterns
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Address the infinite number of  possible arrival time 
patterns.

Intuition. Consider:

a 4-variables Boolean function f  = ab + c + d

a simple - unit delay - gate library L = {AND, OR, INV}

an input arrival pattern T = [0,0,0,10]

Would the exact delay implementation for f change 
with:

T = [0,0,0,100]

T= [0,0,0,106]

After a threshold, say ∆(n, L), the exact delay circuit 
remains the same:

Loose bound - ∆(n, L) = n * dMUX2:1(L)

c 

a b 

d 

f  

Compress an arrival pattern s.t.: ti = max(ti, (max(T) - ∆(n, L))) 

Equioptimizable

Pattern



Equioptimizable Patterns

9

all (infinite) arrival time patterns

(finite) equioptimizable patterns

(∆(n, L) + 1)n

n = 4,

L ={INV, 

NAND, NOR, 

XNOR, MUX}

280 

equioptimizable 

patterns 

(including extra 

compression) 
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Building Exact Delay Databases
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What is an exact delay database?

Entries Cij: exact delay circuits (n, L)

Computed with explicit enumeration (n < 6) or implicit enumeration (n ≥ 6)

Rows: P classes (n)

e.g., n=3 has 80 P classes. P classes are known and independent of  tech.

Columns: equioptimizable patterns (n, L)

Compress eq. patterns into unique integers in a dense range (interval)

From equioptimizable T to: Σi ti (∆(n, L) + 1) (i - 1)  

Which maps : [0,  (∆(n, L) + 1)n – 1]
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Exact Delay Rewriting
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1. For each node of  the network, compute all n-cuts:

2. For each cut:

a. Constant time lookup of  the exact circuit realization from the 

database

b. Evaluate the delay gain (eventually attenuated by the area cost) for 

the replacement move

3. Evaluate best delay gain:

a. If  best delay gain > threshold: commit the best replacement

4. Iterate 1 as long as there is timing gain or maximum # passes is 

reached

How to use the exact delay database of  size n?
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Boolean (Re)Synthesis
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Boolean resynthesis aims at improving an existing logic network 

implementation. 

c b 

a a b a c a 

f 
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a c 

a 

f 

 

Boolean resynthesis is capable of  stronger optimization than algebraic 

techniques, but has higher computational complexity. 

We revisit fundamental data structures and algorithms for Boolean 

resynthesis, with focus on resubstitution, MSPF and refactoring. 
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Theory of  Boolean Filtering (for Resub)
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In principle, k-resubstitution can produce optimal logic networks

Unfortunately, k-resubstitution is (very) computationally expensive

Example: simple 1-resubstitution using the AND-2 gates:

N internal nodes in the window, BDD/truth tables for each node.

Try to express each one node as AND of  two other nodes in the window. 

O(N2) equivalence checks for each node, O(N3) for the whole window. 

Many equivalence checks are still spent in verifying null candidates 

Resub that cannot possibly lead to a valid solution. 

Complexity gets even worse 

with higher order resub!

Windows 

Network 



Theory of  Boolean Filtering
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We aim at spending runtime only on valid resub candidates

We make use of  canalizing functions to implement Boolean filtering rules, for 
example:

f  = a * b is valid if  and only if  f  * a = f

f  = a + b is valid if  and only if  f  + a = f

f  = s’ * a + s * b is valid if  and only if  f  * s ≠ 0 and f ’ * s ≠ 0 

AOI, XOR, XOAI, MUX-XOR and complex-resub rules can be derived from 
the general theory of  canalizing functions

abc 01> r voter.blif;st;ps 

top                           : i/o = 1001/    1  lat =    0  and =  13758  lev = 70 

abc 03> resub -K 16;time;ps 

elapse: 1.41 seconds, total: 1.41 seconds 

top                           : i/o = 1001/    1  lat =    0  and =  11611  lev = 68 

  

xxx> rl voter.blif;ps 

top            pi=1001(1001) po=1(1) nodes=13758 terms=13759 lits(sop)=27516 

xxx> ttresub -c 16;time;ps 

elapse: 1.2 cpu, 55804 Kb memory; total: 1.2 cpu, 55804 Kb memory (K=1024) 

top            pi=1001(1001) po=1(1) nodes=10560 terms=11094 lits(sop)=21120 

With Boolean filtering: better 

utilization of  computing 

power

(Many) more optimization 

opportunities found at the 

same runtime cost 

(Much) less runtime is spent 

to find the same 

optimizations as before
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Next Challenges
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With the ideas presented so far, we got (and exceeded) the:

1% runtime overhead for 10% total negative slack reduction (at no area cost) 

Exact Delay Synthesis

1% runtime overhead for 1% area reduction (at no timing cost) 

Boolean Resynthesis

Where to get the next timing, area and power goals (focusing on logic opt.)?

Stronger collapsing

Symmetric normal forms, bdd/sop hybrid forms, etc.

More exact synthesis

Multi-output exact synthesis

Revisit don’t cares

Trade runtime for memory 

Technology-dependent technology-independent synthesis

Run logic optimization on tech. accurate assumptions and costs

More ideas?

This workshop is a great opportunity to discuss with top experts in the field!!
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Conclusions (Take-home Messages)
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Exact solutions become more and more available

We are at a point in technology where suboptimal design has a tremendous cost

Computing capabilities increased a lot since heuristic techniques have been developed

For small/medium instances of  the problem, obtaining exact solutions is today 
runtime affordable

Time to revisit Boolean techniques!

We have seen:

theoretical developments 

practical improvements

making Boolean techniques runtime affordable (w.r.t. algebraic counterparts)

QoR is much better

Never stop exploring logic and its optimization!

Physical design becomes increasingly important but logic remains the “backbone of  
EDA”

Logic optimization is still far from being considered a solved problem

the increase in the sizes of  problem instances cause existing methods to break down, as to be 
expected of  an intractable problem

It is critical to keep looking for new solutions



Questions?

Thank you for your attention!
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