
Advances In Industrial

Logic Synthesis

Luca Amarù★,

Patrick Vuillod✪, Jiong Luo★

Design Group, Synopsys Inc., Sunnyvale, California, USA ★

Design Group, Synopsys, Grenoble, FR ✪

Logic Synthesis

2

Y<=A XOR B;

W<=C AND A;

K<=Y OR W;

Q<=K XOR C;

Primary goals of logic synthesis:

Reduce delay

Reduce area

Reduce power

With small runtime budget!

What is currently a “good deal” for
the EDA industry?

Compare to a complete design flow

1% runtime overhead for 10% total
negative slack reduction (at negligible
area cost)

1% runtime overhead for 1% area
reduction (at no timing cost)

How to obtain these challenging goals?

Outline

3

Exact Delay Synthesis

Theory of Equioptimizable Patterns

Building Exact Delay Databases

Exact Delay Rewriting

Boolean (Re)Synthesis

Theory of Boolean Filtering

Enhanced Resubstitution

Generalized Refactoring

Next Challenges

Conclusions

Outline

4

Exact Delay Synthesis

Theory of Equioptimizable Patterns

Building Exact Delay Databases

Exact Delay Rewriting

Boolean (Re)Synthesis

Theory of Boolean Filtering

Enhanced Resubstitution

Generalized Refactoring

Next Challenges

Conclusions

Exact Delay Synthesis: The Problem
Given:

a Boolean function

a set of arrival times at the inputs

a gate library with associated delay values

The exact delay synthesis problem asks for a circuit implementation

with the smallest arrival time at the output(s).

ta=4

tb=1

tc=0

dand=2

dinv=1

f = a * b * c

a b

c

f

c b

a

f

6

Unfortunately, exact delay synthesis is intractable:

Existing design flows rely on heuristic methods.

However, heuristic techniques may miss optimization opportunities.

Affordable solution: pre-compute & store exact delay circuits

(database) for later re-use during synthesis.

Exact Delay Synthesis: The Problem

A database for exact delay synthesis is

a k × m matrix of logic circuits:

k is the number of functions

m is the number of arrival time patterns

For n input variables, we have k ≤ 22^n ,

m is unbounded as the number of

possible arrival time patterns is infinite!

Function id & boundary

DB of Optimal Circuits

Outline

7

Exact Delay Synthesis

Theory of Equioptimizable Patterns

Building Exact Delay Databases

Exact Delay Rewriting

Boolean (Re)Synthesis

Theory of Boolean Filtering

Enhanced Resubstitution

Generalized Refactoring

Next Challenges

Conclusions

Equioptimizable Patterns

8

Address the infinite number of possible arrival time
patterns.

Intuition. Consider:

a 4-variables Boolean function f = ab + c + d

a simple - unit delay - gate library L = {AND, OR, INV}

an input arrival pattern T = [0,0,0,10]

Would the exact delay implementation for f change
with:

T = [0,0,0,100]

T= [0,0,0,106]

After a threshold, say ∆(n, L), the exact delay circuit
remains the same:

Loose bound - ∆(n, L) = n * dMUX2:1(L)

c

a b

d

f

Compress an arrival pattern s.t.: ti = max(ti, (max(T) - ∆(n, L)))

Equioptimizable

Pattern

Equioptimizable Patterns

9

all (infinite) arrival time patterns

(finite) equioptimizable patterns

(∆(n, L) + 1)n

n = 4,

L ={INV,

NAND, NOR,

XNOR, MUX}

280

equioptimizable

patterns

(including extra

compression)

Outline

10

Exact Delay Synthesis

Theory of Equioptimizable Patterns

Building Exact Delay Databases

Exact Delay Rewriting

Boolean (Re)Synthesis

Theory of Boolean Filtering

Enhanced Resubstitution

Generalized Refactoring

Next Challenges

Conclusions

Building Exact Delay Databases

11

What is an exact delay database?

Entries Cij: exact delay circuits (n, L)

Computed with explicit enumeration (n < 6) or implicit enumeration (n ≥ 6)

Rows: P classes (n)

e.g., n=3 has 80 P classes. P classes are known and independent of tech.

Columns: equioptimizable patterns (n, L)

Compress eq. patterns into unique integers in a dense range (interval)

From equioptimizable T to: Σi ti (∆(n, L) + 1) (i - 1)

Which maps : [0, (∆(n, L) + 1)n – 1]

Outline

12

Exact Delay Synthesis

Theory of Equioptimizable Patterns

Building Exact Delay Databases

Exact Delay Rewriting

Boolean (Re)Synthesis

Theory of Boolean Filtering

Enhanced Resubstitution

Generalized Refactoring

Next Challenges

Conclusions

Exact Delay Rewriting

13

1. For each node of the network, compute all n-cuts:

2. For each cut:

a. Constant time lookup of the exact circuit realization from the

database

b. Evaluate the delay gain (eventually attenuated by the area cost) for

the replacement move

3. Evaluate best delay gain:

a. If best delay gain > threshold: commit the best replacement

4. Iterate 1 as long as there is timing gain or maximum # passes is

reached

How to use the exact delay database of size n?

Outline

14

Exact Delay Synthesis

Theory of Equioptimizable Patterns

Building Exact Delay Databases

Exact Delay Rewriting

Boolean (Re)Synthesis

Theory of Boolean Filtering

Enhanced Resubstitution

Generalized Refactoring

Next Challenges

Conclusions

Boolean (Re)Synthesis

15

Boolean resynthesis aims at improving an existing logic network

implementation.

c b

a a b a c a

f

c

b

a c

a

f

Boolean resynthesis is capable of stronger optimization than algebraic

techniques, but has higher computational complexity.

We revisit fundamental data structures and algorithms for Boolean

resynthesis, with focus on resubstitution, MSPF and refactoring.

Outline

16

Exact Delay Synthesis

Theory of Equioptimizable Patterns

Building Exact Delay Databases

Exact Delay Rewriting

Boolean (Re)Synthesis

Theory of Boolean Filtering

Enhanced Resubstitution

Generalized Refactoring

Next Challenges

Conclusions

Theory of Boolean Filtering (for Resub)

17

In principle, k-resubstitution can produce optimal logic networks

Unfortunately, k-resubstitution is (very) computationally expensive

Example: simple 1-resubstitution using the AND-2 gates:

N internal nodes in the window, BDD/truth tables for each node.

Try to express each one node as AND of two other nodes in the window.

O(N2) equivalence checks for each node, O(N3) for the whole window.

Many equivalence checks are still spent in verifying null candidates

Resub that cannot possibly lead to a valid solution.

Complexity gets even worse

with higher order resub!

Windows

Network

Theory of Boolean Filtering

18

We aim at spending runtime only on valid resub candidates

We make use of canalizing functions to implement Boolean filtering rules, for
example:

f = a * b is valid if and only if f * a = f

f = a + b is valid if and only if f + a = f

f = s’ * a + s * b is valid if and only if f * s ≠ 0 and f ’ * s ≠ 0

AOI, XOR, XOAI, MUX-XOR and complex-resub rules can be derived from
the general theory of canalizing functions

abc 01> r voter.blif;st;ps

top : i/o = 1001/ 1 lat = 0 and = 13758 lev = 70

abc 03> resub -K 16;time;ps

elapse: 1.41 seconds, total: 1.41 seconds

top : i/o = 1001/ 1 lat = 0 and = 11611 lev = 68

xxx> rl voter.blif;ps

top pi=1001(1001) po=1(1) nodes=13758 terms=13759 lits(sop)=27516

xxx> ttresub -c 16;time;ps

elapse: 1.2 cpu, 55804 Kb memory; total: 1.2 cpu, 55804 Kb memory (K=1024)

top pi=1001(1001) po=1(1) nodes=10560 terms=11094 lits(sop)=21120

With Boolean filtering: better

utilization of computing

power

(Many) more optimization

opportunities found at the

same runtime cost

(Much) less runtime is spent

to find the same

optimizations as before

Outline

25

Exact Delay Synthesis

Theory of Equioptimizable Patterns

Building Exact Delay Databases

Exact Delay Rewriting

Boolean (Re)Synthesis

Theory of Boolean Filtering

Enhanced Resubstitution

Generalized Refactoring

Next Challenges

Conclusions

Next Challenges

26

With the ideas presented so far, we got (and exceeded) the:

1% runtime overhead for 10% total negative slack reduction (at no area cost)

Exact Delay Synthesis

1% runtime overhead for 1% area reduction (at no timing cost)

Boolean Resynthesis

Where to get the next timing, area and power goals (focusing on logic opt.)?

Stronger collapsing

Symmetric normal forms, bdd/sop hybrid forms, etc.

More exact synthesis

Multi-output exact synthesis

Revisit don’t cares

Trade runtime for memory

Technology-dependent technology-independent synthesis

Run logic optimization on tech. accurate assumptions and costs

More ideas?

This workshop is a great opportunity to discuss with top experts in the field!!

Outline

27

Exact Delay Synthesis

Theory of Equioptimizable Patterns

Building Exact Delay Databases

Exact Delay Rewriting

Boolean (Re)Synthesis

Theory of Boolean Filtering

Enhanced Resubstitution

Generalized Refactoring

Next Challenges

Conclusions

Conclusions (Take-home Messages)

28

Exact solutions become more and more available

We are at a point in technology where suboptimal design has a tremendous cost

Computing capabilities increased a lot since heuristic techniques have been developed

For small/medium instances of the problem, obtaining exact solutions is today
runtime affordable

Time to revisit Boolean techniques!

We have seen:

theoretical developments

practical improvements

making Boolean techniques runtime affordable (w.r.t. algebraic counterparts)

QoR is much better

Never stop exploring logic and its optimization!

Physical design becomes increasingly important but logic remains the “backbone of
EDA”

Logic optimization is still far from being considered a solved problem

the increase in the sizes of problem instances cause existing methods to break down, as to be
expected of an intractable problem

It is critical to keep looking for new solutions

Questions?

Thank you for your attention!

29

